source("test/main_pkgs.R")
load(file_plsr)
load(file_trend)
load("data/00basement_TP.rda")
load(file_pheno_010)
load(file_preseason)
ngrid = length(gridclip2_10)
melt_list2 <- function(res){
melt_tree(res, c("type_trend", "type_source")) %>%
melt(c("type_trend", "type_source", "I"))
}
{
lst_trend = list(MK = l_mk.main, LM = l_lm.main)
type_sources = names(lst_trend[[1]])
years = c(16, 16, 14)
# update attributable change
res <- foreach(l_trend = lst_trend) %do% {
foreach(obj = lst_plsr[type_sources], trend = l_trend, nyear = years) %do% {
ans = attribute_change(obj, trend, nyear)
x <- ans[, -1]
x[abs(x) > 50] = 50
cbind(ans[, 1], x)
}
}
res.RC = map_depth(res, 2, function(d){
d = d[, -(1:2)] %>% abs()
sum = as.matrix(d) %>% rowSums2()
perc = d/sum*100
cbind(I = 1:ngrid, perc)
})
# dorm
res.dorm = map_depth(res[2], 2, function(d){
d = d[, -(1:2)] %>% abs()
# browser()
dorm = apply(d, 1, which.max) %>% map_int(dplyr::first)
# browser()
cbind(I = 1:ngrid, dorm) %>% as.data.table()
# print(ans)
})
varnames = colnames(res[[1]][[1]])[-(1:2)]
df <- melt_list2(res)
df.RC <- melt_list2(res.RC)
df.dorm <- melt_tree(res.dorm, c("type_trend", "type_source"))
df.dorm$dorm %<>% factor(labels = varnames)
}
## FIGURE 3: boxplot
Figure3 = TRUE
if (Figure3) {
## 2000-2015
names_sate = c("GIMMS", "MOD13C1", "SPOT")
years = c(16, 16, 14)
lst <- foreach(plsr = lst_plsr[names_sate], ans = res$MK[names_sate], nyear = years) %do% {
obj <- plsr$SOS
obj$attribute_change = ans[, -1]
d = ans[, -(1:2)] %>% abs()
sum <- rowSums2(as.matrix(d))
obj$RC = d/sum*100
varnames = c("VIP", "std.coefs", "attribute_change", "RC")
obj[varnames] #%>% map(as.data.table)
# g1 <- pls_show(obj, nyear, hjust, vjust)
}
type = "SOS"
gs = foreach(obj = lst, varname = names(lst), i = icount()) %do% {
hjust <- switch(i, 2, 2, 3, 3)
vjust = switch(i, 1.5, 1.5, 2.5, 2.5)
# Figures/
outfile <- glue("Figure4_PLSR_{varname}_{type}.pdf")
p <- pls_show(obj, nyear = 1, hjust, vjust)
write_fig(p, gsub(".pdf$", ".pdf", outfile), 11, 6.6, use.cairo_pdf = TRUE)
}
# g = arrangeGrob(grobs = gs, nrow = 1)
# write_fig(g, "a.pdf", 10, 7)
}
# d <- map(lst, ~.$SOS$VIP %>% data.table()) %>% melt_list("sate")
# d1 = d[, .N, .(sate)]
# d2 = d[SOS <= 0.8, .N, .(sate)]
# variable mean median sd
# 1: EOS -1.7243302 -2.73437500 8.781122
# 2: Tmin -0.7336492 -0.14144217 8.613832
# 3: Tmax 0.2281666 0.01207451 7.530536
# 4: Prec -0.6018343 -0.15758746 7.978137
# 5: Srad -0.3986154 -0.14670051 8.530643
# 6: SOS -0.2442552 -0.05883240 7.568426
# variable mean median sd
# 1: EOS 1.425511694 -0.053846154 8.323376
# 2: Tmin 0.636195314 0.131498933 8.123788
# 3: Tmax 0.009441344 -0.002674334 7.615800
# 4: Prec -0.079978067 -0.033008740 7.614269
# 5: Srad 0.101953554 -0.020010268 7.680559
# 6: SOS 0.667179395 0.026137275 7.056927
# variable mean median sd
# 1: EOS 2.13269994 -0.81262530 12.972117
# 2: Tmin 1.92627289 0.18136346 11.849286
# 3: Tmax 0.03980446 -0.01414608 9.373866
# 4: Prec 0.13467908 0.01075259 9.035891
# 5: Srad 0.28777806 0.03014576 9.932005
# 6: SOS -0.80953285 -0.14468120 8.334032
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.